

इंडियन ऑयल कॉर्पोस्शन लिमिटेड

कोंगाइगाँव रिफाइनरी डाकघर : धालीगाँव - 783 385 जिला : चिरांग (असम)

Indian Oil Corporation Limited

Bongaigaon Refinery P.O. : Dhaligaon - 783 385 Dist. : Chirang (Assam)

Date: 17.05.2013

रिफाइनरीज प्रभाग

Refineries Division

IOC/BGR/ENV/REP/MoEF/2012-13/02

То

The Chief Conservator of Forests Regional Office, North East Region Ministry of Environment & Forests Law-U-SIB, Lumbatngen, Near M.T.C. Workshop,

Shillong – 793021

Subject: Half yearly Report for the period of 1st October, 2012 to 31st March, 2013 for "Refinery Expansion" Project

Dear Sir,

With reference to above, we are enclosing the Six Monthly Report for the period of 1st **October, 2012 to 31st March, 2013** for your kind perusal. The reports are being sent as per EIA Rules'2006 for the "Environmental Clearances" issued by MoEF to Bongaigaon Refinery, (BGR) for "Refinery Expansion" project.

Thanking you,

Yours faithfully,

(A.K Agarwal) Chief Manager (HSE)

Copy to:

- 1. Member Secretary, Pollution Control Board, Assam Bamunimaidam, Guwahati 781 021
- Zonal Officer, Central Pollution Control Board Eastern Zonal Office, 'TUM-SIR', Lower Motinagar, Near Fire Brigade H.Q., Shillong – 793014

Half yearly Report for the period of 1st October, 2012 to 31st March, 2013 for "Refinery Expansion" project

Environmental Clearance for Refinery Expansion, De-bottlenecking of Reformer and LPG facility vide MoEF's letter No. J.11011/24/90-IA-II dated 03/06/1991:

Plant Commissioning dates:

- 1. Crude Distillation Unit II: 09.05.95
- 2. Delayed Coker Unit II: 06.03.96

SI. No	Clearance Conditions	Status
1.	Six monthly Effluent Quality (Point No. VIII)	Furnished in Appendix-A1
2.	Six monthly Ambient Air Quality/ Stack Monitoring Data	Furnished in Appendix-A2
3.	Tree Plantation Data	Furnished in Appendix-A3
4.	Special Information	Furnished in Appendix-A4

APPENDIX – A1

Effluent Discharged (Figure in M³/Hr)

(1st October 2012 to 31st March 2013)

А	Industrial Effluent M ³ /Hr	178.4
В	Domestic Effluent from BGR Township M ³ /Hr	81.4
С	Total Effluent Treated (A + B) M ³ /Hr	259.8
D	Treated Effluent Reused M ³ /Hr	246.7
Е	Effluent Discharged M ³ /Hr	13.2
F	M ³ of Effluent discharged for 1000 tones of Crude processed	48.4 (Std. 400)

EFFLUENT QUALITY

A. Treated Effluent Quality

			013)		
SI. No	Parameter	MINAS,2008	Min	Avg.	Max
1	p ^H value	6.0 - 8.5	6.5	7.2	8.5
2	Oil and Grease, mg/l	5.0	0.6	1.5	4.0
3	Bio-Chemical Oxygen Demand (3 Day at 27°C), mg/l	15.0	2.0	3.8	11.0
4	Chemical Oxygen Demand (COD), mg/l	125.0	19.0	33.2	80.0
5	Suspended solids, mg/l	20.0	2.0	4.9	13.0
6	Phenolic compounds (as C6H5OH), mg/l	0.35	BDL	BDL	BDL
7	Sulphide (as S), mg/l	0.50	BDL	BDL	BDL
8	CN mg/l	0.20	BDL	BDL	BDL
9	Ammonia as N, mg/l	15.0	0.10	0.53	1.36
10	TKN, mg/l	40.0	0.70	1.06	1.57
11	P, mg/l	3.0	0.12	0.47	1.20
12	Cr (Hexavalent), mg/l	0.10	BDL	BDL	BDL
13	Cr (Total), mg/l	2.0	BDL	BDL	BDL
14	Pb, mg/l	0.10	BDL	BDL	BDL
15	Hg, mg/l	0.01	BDL	BDL	BDL
16	Zn, mg/l	5.0	BDL	BDL	BDL
17	Ni, mg/l	1.0	BDL	BDL	BDL
18	Cu, mg/l	1.0	BDL	BDL	BDL
19	V, mg/l	0.20	BDL	BDL	BDL
20	Benzene, mg/l	0.10	BDL	BDL	BDL
21	Benzo (a) pyrene, mg/l	0.20	BDL	BDL	BDL

(1st October 2012 to 31st March 2013)

EFFLUENT QUALITY

B. Final Outlet (From the Complex) Effluent Quality

18

19

20

21

Cu,

V,

mg/l

mg/l

Benzene, mg/l

Benzo (a) pyrene,

mg/l

SI. Parameter MINAS Min Avg. Max No. p^H value 1 6.0 - 8.5 6.5 7.6 8.5 2 Oil and Grease, mg/l 5.0 1.00 1.87 5.00 **Bio-Chemical Oxygen Demand** 3 15.0 2.0 4.6 12.0 (3 Days at 27° C), mg/l 4 Chemical Oxygen Demand (COD), mg/l 125.0 36.6 120.0 19.0 2.0 5 Suspended Solids, mg/l 20.0 5.5 20.0 6 Phenolic compounds (as C6H5OH), mg/l 0.35 0.02 0.03 0.08 7 Sulphide (as S), mg/l 0.50 0.02 0.15 0.50 BDL 8 CN, mg/l 0.20 BDL BDL 0.43 0.68 9 Ammonia as N, mg/l 15.0 0.10 TKN, mg/l 10 40.0 0.68 0.92 1.15 11 P, mg/l 3.0 0.35 0.83 1.30 BDL BDL BDL 12 Cr (Hexavalent), mg/l 0.10 BDL BDL BDL Cr (Total), mg/l 2.0 13 BDL BDL BDL 14 Pb, mg/l 0.10 BDL BDL BDL 0.01 15 Hq. mg/l BDL BDL BDL Zn, mg/l 5.0 16 BDL BDL BDL 17 Ni, mg/l 1.0

(1st October 2012 to 31st March 2013)

BDL

BDL

BDL

BDL

1.0

0.20

0.10

0.20

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

STACK MONITORING DATA

(1st October 2012 to 31st March 2013)

A. SO₂ Emission (mg/Nm³):

Stocko	Emission	Observed value				
Slacks	Std.	Min	Avg.	Max		
CDU-I		92	377	649		
CDU-II		65	368	998		
DCU-I	200	91	419	655		
DCU-II	F.G. = 1	23	416	996		
СРР		29	323	998		
Reformer	For	5	31	361		
HO-1		14	142	444		
Isomerisation		1	15	212		

B. NO_x Emission (mg/Nm³):

Stacks	Emission	Observed value				
	Std.	Min	Avg.	Мах		
CDU-I		63	112	409		
CDU-II		23	104	333		
DCU-I	150	50	96	221		
DCU-II	4.0	44	88	212		
СРР	О. Г. С.	101	237	429		
Reformer		20	136	276		
HO-1		10	87	212		
Isomerisation		2	28	63		

C: PM Emission (mg/Nm³)

Stacks	Emission	Observed value				
	Std.	Min	Avg.	Max		
CDU-I		9.0	12.5	16.5		
CDU-II	-	6.0	16.6	30.8		
DCU-I	8 6	4.0	15.2	34.5		
DCU-II		6.0	6.0	6.0		
СРР	<u>п</u> 0.	14.0	18.0	25.1		
Reformer	For	4.7	6.6	8.0		
HO-1/2		9.0	13.3	19.0		
Isomerisation		4.0	5.7	8.0		

STACK MONITORING DATA (1st October 2012 to 31st March 2013)

D. CO Emission (mg/Nm³)

Otestra	Emission	Observed value					
Stacks	Std.	Min	Avg.	Max			
CDU-I		29.0	33.0	41.0			
CDU-II		43.0	51.0	61.0			
DCU-I	20	33.0	37.7	43.0			
DCU-II		47.0	47.0	47.0			
СРР	Е.О Е.G	39.0	48.3	63.0			
Reformer	For	7.0	9.7	11.0			
HO-1/2		6.0	8.3	10.0			
ISMERISATION		4.0	13.3	19.0			

E. Ni + V Emission (mg/Nm³) :

Chaoka	Emission	Observed value					
Stacks	Std.	Min	Avg.	Max			
CDU-I		<1.0	<1.0	<1.0			
CDU-II		<1.0	<1.0	<1.0			
DCU-I	2	<1.0	<1.0	<1.0			
DCU-II		<1.0	<1.0	<1.0			
СРР	or F.	<1.0	<1.0	<1.0			
Reformer	Ъ	<1.0	<1.0	<1.0			
HO-1/2		<1.0	<1.0	<1.0			
ISMERISATION		<1.0	<1.0	<1.0			

<u>APPENDIX – A2</u>

AMBIENT AIR QUALITY AROUND BGR COMPLEX (Average of monthly sample Schedule – VII) (1st October 2012 to 31st March 2013)

	Station	Continuous Monitoring Station	Near Tube Well No.14	Near LPG Bottling plant	Rural Health Centre	Bartala Rail Gate	Near TW No.7 in Township				
1	SO2 (Std.: 50/80 µg/m ³)										
	Min	1.9	BDL	BDL	BDL	BDL	BDL				
	Average	14.9	BDL	BDL	BDL	BDL	BDL				
	Мах	52.3	BDL	BDL	BDL	BDL	BDL				
	No of observation	Continuous	48	48	48	48	48				
2	NO2 (Std. 40/80 µg/m ³)										
	Min	3.3	5.0	5.0	5.0	5.0	5.0				
	Average	6.9	8.0	7.8	8.6	8.6	8.3				
	Мах	13.6	10.0	10.0	13.0	12.0	12.0				
	No of observation	Continuous	48	48	48	48	48				
3	PM-10 (Std. 60/100 µg/	m³)									
	Min	2.8	32.0	52.0	50.0	21.0	34.0				
	Average	32.2	76.0	72.1	84.9	79.1	74.9				
	Мах	92.1	98.0	94.0	98.0	98.0	93.0				
	No of observation	Continuous	48	48	48	48	48				
4	PM-2.5 (Std. 40/60 µg/r	n ³)									
	Min	2.3	16.0	25.0	26.0	11.0	13.0				
	Average	21.6	45.6	44.2	49.9	47.5	43.8				
	Мах	52.3	58.0	58.0	60.0	60.0	56.0				
	No of observation	Continuous	48	48	48	48	48				
5	Ammonia (Std. 100/400	0 μg/m³)									
	Min	2.3	BDL	BDL	BDL	BDL	BDL				
	Average	2.9	BDL	BDL	BDL	BDL	BDL				
	Мах	3.6	BDL	BDL	BDL	BDL	BDL				
	No of observation	Continuous	48	48	48	48	48				
6	Pb (Std0.5/1.0 μg/m ³))			-						
	Min		BDL	BDL	BDL	BDL	BDL				
	Average		BDL	BDL	BDL	BDL	BDL				
	Мах		BDL	BDL	BDL	BDL	BDL				
	No of observation		48	48	48	48	48				

7	Arsenic (As) (Std 6 ng/m3)									
	Min		BDL	BDL	BDL	BDL	BDL			
	Average		BDL	BDL	BDL	BDL	BDL			
	Мах		BDL	BDL	BDL	BDL	BDL			
	No of observation		48	48	48	48	48			
8	Ni (Std 20 ng/m3)									
	Min		BDL	BDL	BDL	BDL	BDL			
	Average		BDL	BDL	BDL	BDL	BDL			
	Мах		BDL	BDL	BDL	BDL	BDL			
	No of observation		48	48	48	48	48			
9	CO (Std 2/4 mg/m3									
	Min	0.01								
	Average	0.15								
	Мах	0.93								
	No of observation	Continuous								
10	Ozone (Std100/180 µ	g/m ^{3 for 8hrs./1 hr.}))							
	Min	5.7	BDL	BDL	BDL	BDL	BDL			
	Average	19.9	BDL	BDL	BDL	BDL	BDL			
	Мах	42.0	BDL	BDL	BDL	BDL	BDL			
	No of observation	Continuous	48	48	48	48	48			
11	Benzene(Std. : 5 µg/m	3)								
	Min	0.01	BDL	BDL	BDL	BDL	BDL			
	Average	0.27	BDL	BDL	BDL	BDL	BDL			
	Мах	2.39	BDL	BDL	BDL	BDL	BDL			
	No of observation	Continuous	48	48	48	48	48			
12	Benzo(a)Pyrene_(Std.	: 1 ng/m ³)								
	Min		BDL	BDL	BDL	BDL	BDL			
	Average		BDL	BDL	BDL	BDL	BDL			
	Мах		BDL	BDL	BDL	BDL	BDL			
	No of observation		48	48	48	48	48			

Average of Six Stations												
PARAMETER	SO ₂	NO ₂	РМ- 10	РМ- 2.5	NH₃	Pb	As	Ni	Benz o(a) Pyre ne	со	C ₆ H ₆	O 3
Unit	Unit µg/m ³					ng/m ³			mg/ m³	μg/m ³		
NAAQ Std. 2009	50/ 80	40/ 80	60/ 100	40/ 60	100/ 400	0.5/ 1.0	Max. 6	Max. 20	Max 1	2/4	Max 5	100/ 180
Min	1.9	3.3	2.8	2.3	1.1	BDL	BDL	BDL	BDL	0.01	0.01	5.7
Average	14.9	8.0	69.9	42.1	3.1	BDL	BDL	BDL	BDL	0.15	0.27	19.9
Мах	52.3	13.6	98.0	60.0	3.8	BDL	BDL	BDL	BDL	0.93	2.39	42.0

Page 8 of 9

Tree Plantation (1st October, 2012 to 31st March, 2013)

The entire area inside BGR covers with Greenery through massive plantation activities Through massive plantation work and by giving protection to natural forest growth in side BGR premises, the entire area has become green. The entire plant area where processing plant facilities do not exist has a green cover. This helps in reduction of noise and air pollution level in one hand while on the other hand provides protection to ecological features of the area. The refinery has an excellent quality environment around its complex. Natural greenery can be seen all around the complex and in all seasons of the year.

Total number of trees planted inside plant area & township are around 60,000

However tree plantation is a continuous process in Bongaigaon Refinery to compensate the loss due to tree felling and maintain the green balance.

<u>APPENDIX – A 4</u>

Additional Information

(1st October, 2012 to 31st March, 2013)

Effluent reused during the period (1st October, 2012 to 31st March, 2013) was around 95.0% of the total effluent treated which includes plant effluents as well as Township sewer.

Under the Leak Detection and Repair programme (LDAR), BGR is conducting quarterly Fugitive Emission Survey. During the period from 1st October, 2012 to 31st March, 2013, 22706 potential leaky points were checked and 258 leaky points were detected and rectified. By following LDAR programme in true spirit, the company could not only avoid potential loss of 0 40 MTA (approx.) of light Hydrocarbon to the atmosphere through fugitive sources but also able to keep healthy work environment in the plant complex.

To ensure work area quality and health of equipments, quarterly noise survey was conducted covering all the operating plants, control rooms and ambient surrounding the BGR complex. Noise Survey for all four quarters of 2012-13 has been completed, and no abnormality was reported.

As a measure of Hazardous Waste Management, M/s Balmer Lowrie & Co. Limited was awarded the contract of Oily Sludge processing along with bio-remediation of solids .The party is carrying out the processing of oily sludge from sludge lagoons. About **4093** KL of oily sludge has been processed during the period from **1**st October, **2012 to 31**st March, **2013**.

Further two no. Rain Water Harvesting (ground water recharging) schemes inside BGR complex has been implemented in the year.